02.07.2015

HOMEWORX 02.07.2015

Evan's algebraic toils continue...

Express as a polynomial
Swok. Cole, P. 43, \#11

$$
(3 x+5)\left(2 x^{2}+9 x-5\right)
$$

Express as a polynomial
Swok. Cole, P. 43, \#19

$$
\frac{3 u^{3} v^{4}-2 u^{5} v^{2}+\left(u^{2} v^{2}\right)^{2}}{u^{3} v^{2}}
$$

Express as a polynomial
Swok. Cole, P. 44, \#35

$$
\left(x^{\frac{1}{3}}-y^{\frac{1}{3}}\right)\left(x^{\frac{2}{3}}+x^{\frac{1}{3}} y^{\frac{1}{3}}+y^{\frac{2}{3}}\right)
$$

$$
121 r^{3} s^{4}+77 r^{2} s^{4}-55 r^{4} s^{3}
$$

Simplify

Swok. Cole, P. 54, \#27

$$
\frac{p^{4}+3 p^{3}-8 p-24}{p^{3}-2 p^{2}-9 p+18}
$$

Simplify
Swok. Cole, P. 55, \#71

$$
\left(x^{2}-4\right)^{\frac{1}{2}}(3)(2 x+1)^{2}(2)+(2 x+1)^{3}\left(\frac{1}{2}\right)\left(x^{2}-4\right)^{\frac{-1}{2}}(2 x)
$$

Simplify
Swok. Cole, P. 55, \#81

$$
\frac{\left(4 x^{2}+9\right)^{\frac{1}{2}}(2)-(2 x+3)\left(\frac{1}{2}\right)\left(4 x^{2} x+9\right)^{\frac{-1}{2}}(8 x)}{\left[\left(4 x^{2}+9\right)^{\frac{1}{2}}\right]^{2}}
$$

Simplify; rationalize denominator if necessary
Swok. Cole, P. 56, \#2O

$$
\left(\frac{-64 x^{3}}{z^{6} y^{9}}\right)
$$

Express in the form $a+b i$, where a and b are real numbers Swok. Cole, P. 96, Example 3 a

$$
4(2+5 i)-(3-4 i)
$$

Express in the form $a+b i$, where a and b are real numbers
Swok. Cole, P. 96, Example 3c

$$
i(3-2 i)^{2}
$$

Express in the form $a+b i$, where a and b are real numbers
Swok. Cole, P. 98, Example 4 a

$$
\frac{1}{9+2 i}
$$

Express in the form $a+b i$, where a and b are real numbers
Swok. Cole, P. 98, Example $4 b$

$$
\frac{7-i}{3-5 i}
$$

Express in the form $a+b i$, where a and b are real numbers
Swok. Cole, P. 99, Example 5

$$
(5-\sqrt{-9})(-1+\sqrt{-4})
$$

Solve the equation (and make your steps as long and difficult as possible)
Swok. Cole, P. 108, \#11

$$
y^{\frac{3}{2}}=5 y
$$

Solve the equation (make your work count, but don't count on it working)
Swok. Cole, P. 108, \#31

$$
\sqrt{2 \sqrt{3 x+1}}=\sqrt{3 x-5}
$$

Solve the equation (show your work, though I bet it will SHOW YOU first)
Swok. Cole, P. 108, \#33

$$
\sqrt{1+4 \sqrt{x}}=\sqrt{x}+1
$$

Solve the equation (just f_ck_n' solve it, man)
Swok. Cole, P. 108, \#35

$$
x^{4}-25 x^{2}+144=0
$$

Solve the equation (and destroy it in the process)
Swok. Cole, P. 108, \#45

$$
\left(\frac{t}{t+1}\right)^{2}-\frac{2 t}{t+1}-8=0
$$

Solve for the specified variable
Swok. Cole, P. 108, \#53

Period of a pendulum:

$$
T=2 \pi \sqrt{\frac{l}{2}} \text { for } l
$$

Solve for inequality; express solutions in terms of intervals when able Swok. Cole, P. 118, \#35

$$
0 \leq 4-\frac{1}{3} x<2
$$

Solve for inequality; express solutions in terms of intervals when able Swok. Cole, P. 118, \#63

$$
\left|\frac{2-3 x}{5}\right| \geq 2
$$

Solve the equation
Swok. Cole, P. 127, \#5

$$
\frac{1}{\sqrt{x}}-2=\frac{1-2 \sqrt{x}}{\sqrt{x}}
$$

Solve the equation by completing the square
Swok. Cole, P. 127, \#29

$$
-\frac{1}{2}<\frac{2 x+3}{5}<\frac{3}{2}
$$

Solve for the specified variable
Swok. Cole, P. 127, \#48

Volume of a frustum cone:

$$
V=\frac{1}{3} \pi h\left(r^{2}+R^{2}+r R\right) \text { for } r
$$

(We may need a separate sheet of paper.)

